Exercise 22

(a) Solve the wave equation with $c=1$, boundary conditions (3), (4) with $L=1$, and initial data $f(x)=\frac{1}{2} \sin 2 \pi x+\frac{1}{4} \sin 4 \pi x, g(x)=0$.
(b) Plot several snapshots of the string. How many fixed points do you see in the interval $0<x<1$? Justify your answer.

Solution

The general solution to the wave equation on a finite interval with fixed ends and arbitrary initial shape and zero velocity,

$$
\begin{aligned}
& \frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}, \quad 0<x<L,-\infty<t<\infty \\
& u(x, 0)=\frac{1}{2} \sin 2 \pi x+\frac{1}{4} \sin 4 \pi x \\
& \frac{\partial u}{\partial t}(x, 0)=0 \\
& u(0, t)=0 \\
& u(L, t)=0,
\end{aligned}
$$

is (to be derived in later chapters)

$$
u(x, t)=\sum_{n=1}^{\infty} A_{n} \sin \frac{n \pi x}{L} \cos \frac{n \pi c t}{L} .
$$

To determine the constants A_{n}, set $t=0$ and substitute the given function for $u(x, 0)$.

$$
\begin{aligned}
u(x, 0) & =\sum_{n=1}^{\infty} A_{n} \sin \frac{n \pi x}{L} \\
\frac{1}{2} \sin 2 \pi x+\frac{1}{4} \sin 4 \pi x & =A_{1} \sin \frac{\pi x}{L}+A_{2} \sin \frac{2 \pi x}{L}+A_{3} \sin \frac{3 \pi x}{L}+\cdots
\end{aligned}
$$

Then match the coefficients on both sides.

$$
\begin{aligned}
& A_{1}=0 \\
& A_{2}=\frac{1}{2} \\
& A_{4}=\frac{1}{4} \\
& \vdots \\
& A_{n}=0, \quad n \neq 2,4
\end{aligned}
$$

Therefore, the general solution that satisfies the initial conditions is

$$
\begin{aligned}
u(x, t) & =A_{2} \sin \frac{2 \pi x}{L} \cos \frac{2 \pi c t}{L}+A_{4} \sin \frac{4 \pi x}{L} \cos \frac{4 \pi c t}{L} \\
& =\frac{1}{2} \sin \frac{2 \pi x}{L} \cos \frac{2 \pi c t}{L}+\frac{1}{4} \sin \frac{4 \pi x}{L} \cos \frac{4 \pi c t}{L} .
\end{aligned}
$$

Below is a plot of u versus x over $0<x<1$ at several times with $c=1$ and $L=1$.

Notice that u is zero at $x=\frac{1}{2}$ at all times. Plug in $c=1$ and $L=1$ and $x=\frac{1}{2}$ in the solution.

$$
u\left(\frac{1}{2}, t\right)=\frac{1}{2} \sin \pi \cos 2 \pi t+\frac{1}{4} \sin 2 \pi \cos 4 \pi t=0
$$

This is zero regardless of what t is.

